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ABSTRACT

We present a method for the detection of sleep stages using
the EEG (electroencephalogram). The method consists of
four steps: segmentation; parameter extraction; cluster anal-
ysis; and classi�cation. The parameters we compared were
the parameters of Hjorth, the harmonic parameters and the
relative band energy. For cluster analysis we used a mod-
i�ed version of the K-means algorithm. It is shown that
the investigated parameters are capable of extracting infor-
mation from the EEG relevant for sleep stage scoring. Us-
ing the modi�ed K-means algorithm it is possible to �nd
`similar' segments and hence automate the detection of sleep
stages. However, extra information e.g., the ECG (electro-
cardiogram) or the EOG (electrooculogram) is probably nec-
essary for a clear discrimination between the di�erent sleep
stages. {Keywords: automatic sleep scoring, EEG analysis

1. INTRODUCTION

An EEG (electroencephalogram), a measurement of the time-
varying potential di�erences between electrodes �xed on the
scalp, is an important clinical aid used by the neurologist
for the diagnosis of sleep disorders. Sleep is a non-uniform
biological state and can be divided into 2 main types: rapid
eye movement (REM) and non-rapid eye movement (NREM)
sleep. The latter is subdivided into stages 1, 2, 3 and 4
according to the current sleep scoring standard proposed by
Rechtscha�en and Kales [1].

A review of the EEG can reveal unusual patterns. How-
ever, a complete visual inspection of a long-term EEG record-
ing is a time-consuming and di�cult task. So, a method to
facilitate the review would be highly appreciated. In the past
a number of automated sleep stage scoring methods were
proposed based on EEG records, sometimes in combination
with the EOG (electrooculogram) and the EMG (electromyo-
gram) [2, 3]. These methods have in common that they ex-
tract certain features from the recordings and apply a num-
ber of rules to classify these segments into one of the 5 sleep
stages.

We present a method that uses a number of time and fre-
quency domain parameters obtained from a segmented sleep
EEG recording to construct a vector space. By using a
slightly modi�ed version of the K-means algorithm it is pos-
sible to �nd clusters in this vector space. By assigning a
label to each cluster according to the manual scoring of the
respective codebook vectors, we achieve a (semi-) automatic
detection of the sleep stages using the EEG. The method in
essence only searches for `similar' segments and thus no a pri-
ori rules need to be incorporated, leaving the �nal decision
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Figure 1. Schematic overview of the algorithm.

to the human reviewer.

2. METHOD

The method we developed consists of 4 consecutive steps,
as depicted in �gure 1: segmentation; parameter extraction;
cluster analysis; and classi�cation. Three sets of parameters
were compared: the parameters of Hjorth, the harmonic pa-
rameters and the relative band energy. The cluster analysis
was performed by using the K-means clustering algorithm.

2.1. Segmentation

In the segmentation step, one channel of the sampled EEG,
x[n], is broken down into sections with a �xed length, called
segments. We choose the segment length to be 10s because
we had the complete scoring for a sleep EEG in steps of 10s.
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2.2. Parameter extraction

2.2.1. Parameters of Hjorth

Based on the variance of the signal x[n] and its �rst and
second derivative (di�erences) in a segment, Hjorth derived 3
parameters, sometimes called descriptors, for the quanti�ca-
tion of an EEG. If we write the variance of the i-th derivative
of x[n] as �i (with �0 being the variance of x[n]), then the
parameters of Hjorth are de�ned as follows [4]:

Activity A = �
2

0 (1)

Mobility M =
�1

�0
(2)

Complexity C =
p
(�2=�1)2 � (�1=�0)2: (3)

It is possible to relate these parameters to the moments of the
spectral density function Sxx(f) [5], showing that mobility

is a measure for the center frequency and that complexity is
a measure for the bandwidth of the signal.

It is also shown that the parameters of Hjorth give a valid
description of an EEG only if the signal has a symmetric
probability density function with only one maximum. Is must
also be noted that the accuracy by which the parameter com-

plexity can be computed is limited. This is due to the fact
that one must calculate the �rst and second derivatives and
take the ratio between them and thus one possibly ampli�es
the noise. Therefore, to reduced the in
uence of high noise
frequencies, one should band �lter the EEG.

Nonetheless, these parameters can be valuable in a practi-
cal analysis if the EEG patterns to be analysed have a simple
character, e.g., sleep recordings, and because the parameters
can be easily computed from the time signal [5].

Calculation of the parameters of Hjorth for every segment
results in a 3 dimensional vector space.

2.2.2. Harmonic parameters

Using an estimate of the spectral density function Sxx(f),
the harmonic parameters [6] are the center frequency, the
bandwidth and the value at the center frequency, de�ned as
follows:

fc =

fHZ
fL

fSxx(f)df=

fHZ
fL

Sxx(f)df; (4)

f� =

vuuut
fHZ
fL

(f � fc)2Sxx(f)df=

fHZ
fL

Sxx(f)df ; (5)

Sfc = Sxx(fc): (6)

These parameters are calculated using the spectral density
function between fL and fH , thus allowing to investigate a
speci�c band in the EEG, instead of the whole EEG spec-
trum. The spectral density function Sxx(f) was estimated
using the method of Welch [7].

2.2.3. Relative band energy

Using 7 prede�ned frequency bands, the relative band en-
ergy is de�ned as the ratio between the energy in a band to
the total energy. The 7 bands we used are given in table 1,
in accordance with [8].

Table 1. De�nition of 7 energy bands

Band range (Hz)
Delta 1 0.5{2.5
Delta 2 2.5{4
Theta 1 4{6
Theta 2 6{8
Alpha 8{12
Beta 1 12{20
Beta 2 20{45

2.3. Cluster analysis

The goal in cluster analysis is to categorize (cluster) a number
of points into K groups or clusters so that the distortion, i.e.
the within-cluster sum of distances between member points
and the centroid (also called the codebook vector), is mini-
mized. In general, it is not possible to �nd an analytical
solution that results in an optimal global minimum. There-
fore, one uses an algorithm that guarantees at least to �nd a
local minimum.

We used a slightly modi�ed version of the K-means algo-
rithm [9] to �nd the clusters and corresponding codebook
vectors. In the basic K-means algorithm one starts with K

initial codebook vectors and these are iteratively adjusted
until a (local) minimum is found. The �nal result is, how-
ever, very sensitive to the selection of the initial codebook
vectors. In our implementation, the modi�ed K-means al-
gorithm, we start with only 2 initial codebook vectors and
apply the basic K-means algorithm to obtain 2 good code-
book vectors. Then we iteratively increase the number of
clusters until the desired number K is reached by dividing
the greatest cluster (the cluster who's within-cluster sum of
distances between member points and the centroid is great-
est) into 2 new clusters and applying the K-means algorithm
again.

It is also important to mention that we choose the so-called
mini-max centre as a codebook vector of a cluster instead of
the centroid. The mini-max centre is the point in cluster
who's maximal within-cluster distance, is minimal. As a re-
sult we always obtain codebook vectors that correspond to a
segment of the EEG.

We choose K equal to 20, and afterwards reduced the num-
ber of clusters to 5 (number of sleep stages) by grouping some
clusters so that non-spherical clusters could be modeled.

2.4. Classi�cation

The �nal step is classi�cation. Every point (corresponding to
a segment of the EEG) in a cluster, is scored according to the
(manual) scoring of the segments corresponding to the con-
structed codebook vectors. The classi�cation in sleep stages
of the whole EEG thus only requires the manual scoring of
20 segments.

3. RESULTS

To verify the method we applied the algorithm to one 6-hour
sleep EEG recording. Twenty-one electrodes were placed ac-
cording to the international 10-20 system, with six additional
lateral electrodes to cover the temporal regions. The sleep
EEG had been visually scored by an experienced neurologist
in steps of 10s.
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Figure 2. The vector space constructed with the harmonic pa-
rameters for the channel F7-T7.

The algorithm as described above was applied to the chan-
nel F7-T7 for the 3 sets of parameters. The resulting vector
space for the harmonic parameters is depicted in �gure 2 and
this for the �rst 2 hours of the EEG. The results with the 2
other sets of parameters, the parameters of Hjorth and the
relative band energy, are very similar. The regions (clus-
ters) corresponding to the di�erent sleep stages (as visually
scored) are indicated.

Figure 2 shows that stage w (awake) and stage 1 can be
clearly distinguished. The clusters corresponding to stage
2 and stage 3 are somewhat overlapping, hence making the
automatic detection harder. However, is should be noted that
even experienced neurologists have di�culty in classifying
the di�erent stages without using extra information (e.g.,
ECG and EOG). Furthermore, automatic detection of the
sleep stages is complicated by the presence of so-called sleep
spindles, short waveforms (2{3 s) with a frequency of 12{14
Hz. The parameter vectors associated with these spindles
are scattered in the constructed vector space.

Figure 3 shows the 20 clusters found in the vector space
obtained after cluster analysis with the modi�ed K-means
algorithm. Note that the di�erent parameters had to be nor-
malized prior to the application of the clustering. In �gure 4
the �nal classi�cation is depicted. As suspected, sleep spin-
dles are not being correctly classi�ed due to the fact that
the K-means algorithm searches for spherical clusters. We
suggest altering the method so that in a �st step the spin-
dles are being detected and in a second step the detection
of the sleep stages follows, without taking into account the
segments containing a detected spindles.

4. CONCLUSION AND DISCUSSION

The parameters we investigated, the parameters of Hjorth,
the harmonic parameters and the relative band energy, are
capable of extracting relevant information from the EEG us-
able for sleep stage classi�cation. However, it should be noted
that extra information (e.g., ECG and EOG) is needed for a

BandwidthCenter frequency
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K = 20

Figure 3. The constructed vector space after cluster analysis
with the k-means algorithm.
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Figure 4. The constructed vector space after classi�cation of
the clusters.

clear discrimination between the di�erent sleep stages. Prob-
ably the method will perform better if the information con-
tained in all the channels is being used. In addition, the
method has to be validated using the EEG from di�erent
patients.

The use of contextual information can probably enhance
the agreement between the classi�cation obtained by the al-
gorithm and the visual scoring of the expert. Instead of try-
ing to mimic the classi�cation of the expert, our method
essentially searches for `similar' segments in the EEG. By
presenting the representative segments of the EEG we leave
the �nal decision to the neurologist.
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